INTERNATIONAL JOURNAL FOR NUMERICAL METHODS IN FLUIDS, VOL. 24, 319-336 (1997)

COUPLING BETWEEN LAMINAR FILM CONDENSATION AND
NATURAL CONVECTION ON OPPOSITE SIDES OF A VERTICAL
PLATE

HAN-TAW CHEN AND SHIUH-MING CHANG

Department of Mechanical Engineering, National Cheng Kung University, Tainan 701, Taiwan

SUMMARY

Theoretical analyses which incorporate one-dimensional heat conduction along a plate and transverse heat
conduction approximations are presented to predict the net heat transfer between laminar film condensation of a
saturated vapour on one side of a vertical plate and boundary layer natural convection on the other side. It is
assumed that countercurrent boundary layer flows are formed on the two sides. The governing boundary layer
equations of this problem and their corresponding boundary conditions are all cast into dimensionless forms by
using a non-similarity transformation. Thus the resulting system of equations can be solved by using the local
non-similarity method for the boundary layer equations and a finite difference method for the heat conduction
equation of the plate. The plate temperature and the heat flux through the plate are repetitively determined until
the solutions for each side of the plate match. The predicted results show that the eHectsofiot negligible

for larger values ofA* (thermal resistance ratio between natural convection side and condensing film side) and
the approximation of transverse heat conduction overpredicts the plate temperature for lower vatyes of
(thermal resistance ratio between plate and condensing film). However, no significant differences are observed
between the two different approximations for higher value®of
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INTRODUCTION

Heat transfer across a vertical wall separating two semi-infinite fluid reservoirs at different
temperatures has practical importance in numerous thermal engineering applications, such as nuclear
reactor cooling, heat exchangers, thermal insulation of buildings, etc. The thermal interaction
involved is for the most part inherent in the design of the heat transfer apparatus. Owing to its
importance, various methods have been proposed to analyse such probiéRaghri and Sparrow
studied the conjugate problem of thin film condensation on the outside of a vertical pipe and fully
developed forced convection of a cold fluid inside the pipe. Poulikakossented a theoretical
analysis for examining the phenomenon of conjugate laminar film condensation of a saturated vapour
on one side of a vertical wall and laminar natural convection on the other side. In that work the
natural convection Prandtl numbEr, is assumed to approach infinity. Owing to this assumption,
inertia terms in the momentum equation can be neglected compared with viscous and buoyancy
terms. Furthermore, the Oseen linearization methadd the Nusselt-Rohsenow model were
employed to simplify the natural convection and condensation problems respectively. However, the
effect of the plate thermal resistance on the interaction between the two different heat transfer
systems was not taken into account in this earlier work. Numerical results given by Poulikakos
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showed that omitting the inertia terms of the momentum equation on the natural convection side can
yield acceptable results (accurate to within 10%) everPfgr= O(1). On the other hand, the overall

heat transfer rate can be regarded as a weak functiém.oMoreover, it was found in Reference 8

that the step size of the plate temperatligemust be very small to obtain accurate results.

The present study proposes a mathematical model to investigate the conjugate problem of laminar
film condensation and laminar natural convection separated by a vertical plate. It was shown in
Reference 10 that the plate temperature distribution can be approximately determined by using a one-
dimensional heat conduction equation provided that the aspect ratio (thicheegg) t/L is
sufficiently small. The main purpose of the current study is to investigate the difference between the
present results using a one-dimensional model of heat conduction along the plate and transverse heat
conduction and those given by Poulikakder various important parameters, such as the thermal
resistance of natural convection to fillA¥, the natural convection Prandtl number. and the
thermal resistance of plate to filn®,. Furthermore, the effect oA*, Pr, and R, on the thermal
interaction through the plate between the two different systems will also be discussed. It should be
noted that both the plate temperature and the heat flux through the plate are ur&kpaan in the
present problem. Thus the boundary layer equations on both sides of the plate and the one-
dimensional heat conduction equation for the vertical plate must be solved simultaneously. This was
accomplished by using the two-equation model of the local non-similarity mettaonjunction
with the Nachtsheim—Swigert iteraction scheémand a finite difference approximation.

MATHEMATICAL FORMULATION

The physical geometry of this study and the co-ordinate system are showigure 1, where a
vertical impermeable plate of heightand thickness separates two semi-infinite fluid reservoirs at
different temperatures. The warmer reservoir, at a uniform temper@yrecontains a saturated
vapour. The ambient temperature on the natural convection side@wing to gravity, a continuous
laminar film of condensate occurs on the condensatin side of the plate and flows downwards along the
plate. It should be noted that liquid and vapour boundary layers exist simultaneously on the
condensation side. The heating effect of the condensation side can give rise to an upward flow along
the plate on the natural convection side. Thus the two fluid streams move in opposite directions for
this problem. This analysis is restricted to the case where steady state conditions have been reached
and the flows are laminar. It is also assumed that the physical properties of the natural convection are
constant, except for the density in the buoyancy term, and the assumptions for film condensation
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Figure 1. Physical geometry of system
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along a vertical plate proposed by Kel al** are employed in the present study. Based on these
assumptions, this problem can be formulated in terms of the boundary layer equations for the two
different fluid streams and the one-dimensional heat conduction equation for the plate. It will be
shown that these governing differential equations can be considered separately. Thermal coupling is
achieved by the governing heat conduction equation for the vertical plate separating the two heat
transfer systems.

Natural convection side

The dimensionless forms of the boundary layer equations expressing the conservation of mass,
momentum and energy for the natural convection system shown in Figure 1 can be written as

au,  dug

B R ) 1)

0, oy (
1 TR EITR U
— (u =y, —C) =0, +05+—<, 2
Pr, (““ 95, e ay:) AR @

a0, a0, %0,

e e = 3)
with boundary conditions
u,=v,=0 and 0,=0%¢) atyr=0, (4a)
u.=0 and 0,=-05 asyr— oo. (4b)
The dimensionless parameters in equations (1)—(4) are defined as
y* = Ral/%y /L, & =x/L, Pr, = v¢/o, U, = O.L/o.Ral’?, v, = o L/a Ral™,
Oc =[Te — (Tsat + Teo)/21/ (Teat — Too) Tsat — Too)- ®)

whereRa, is the natural convection Rayleigh number and is defineRlaas= gS(Tqy — Too )L/ Ve

T, denotes the freestream temperature in the natural convection sy8f&f. denotes the
dimensionless plate temperature facing the natural convection@gjdé), when the approximation

of transverse heat conduction is considered. Howedg(S) denotes the dimensionless plate
temperaturd,, (¢) for the case using the approximation of one-dimensional heat conduction along the
plate. 0, and 6, are defined as 0,.=[Tw — (Tt + T)/2)/(Text — Ts) and

Ow = [Tw — (Teat + Too)/2]1/ (Tt — Too)- The boundary conditiord, = 6,,.(&;) at y* =0 will be
assumed when heat conduction along the vertical plate is negligible. However, the boundary
condition aty¥ =0 is 0, = 0,,(¢.) when the approximation of one-dimensional heat conduction
along the plate is considered.

Film condensation side

The dimensionless boundary layer equations expressing the conservation of mass, momentum and
energy for the condensation system can be written as follows.
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Liquid
aus | dvg
=0, 6
S ©
dug g 9%ug
‘]ps(us aé + says) 1+?’ (7)
a0 90, &0,
Jas<uS o >+ Say ) = oy 8
The dimensionless parameters in equations (6)—(8) are given as
y;k = Ra§/4y3/L, é =1- fca Us = us//‘sRal/z/g(ps - pv)l—za (9)
Vs = Z~)s:usRagM/g(ps - pv)sz 05 =T s (Tsat + Too)/z/(Tsat —Too),

whereJa, is the film Jakob numbeRr; is the film Prandtl numbedp, is the ratio ofda, to Pr,, and

Ra, is the film Rayleigh number. These dimensionless numbers are defined respectively as
Jag = cps(Tsat - Too)/hfg» Prg = vs/os, Jps = Jag/Pr, (10)
Ras = g(ps - pv)L3hfg/ksvs(Tsat - Too)‘

Vapor
It is assumed that the pure vapor outside the condensate layer is at the saturation temperature. Thus
only the continuity and momentum equations are required for the vapour phase:

duy | duy
=0, 11
o Toyr D
3 au, vy au, 82uv 12)
pv{uy 35 Uy ayv \7(2.

The dimensionless parameters in equations (11) and (12) are defined as
Y= Rav/4(ys —9)/L, Uy = L~Jv:uvRa\l//z/g(ps - pv)sz vy = Zjv:uvRa\?;M/g(ps - pv)l—zv
Jav - CpV(Tsat - oo)/hfgv Prv = Vv/“vv ‘]pv = JaV/PrV, (13)

Ra, = g(ps — pv)Lghfg/kvVv(Tsat =T

whereJa, is the vapour Jakob numbe?r, is the vapour Prandtl numbelp, is the ratio ofJa, to
Pr,, andRa, is the vapour Rayleigh number.
The boundary conditions for the condensation system are

Uy=uv,=0 and 0,=07¢) atyr=0, (14a)

u, — 0 asyr— oo, (14b)

where07(¢) denotes the dimensionless plate temperature facing the condensatiafy,side,when
the approximation of transverse heat conduction is consider@g, is defined as

Own = [Twn — (Teat + Too)/2]1/(Tsat — Too)- 07(€) denoted),, (&) for the case in which one-dimensional
heat conduction along the plate is considered.
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Interface matching

The vapour velocity tangent to the liquid—vapour interface is the same as the liquid velocity when
there is no slip. The vapour velocity approaches zero at some distance away from this interface. The
compatibility requirements are that the velocity, mass transfer, shear force and temperature along the
liquid—vapour interface must be matched. The dimensionless forms of these compatibility
requirements are

1/2
ts (Rag
=—\pa 15
sl ™ s
do* ve (Rag\ 4/ doy
= U ="\pa - 15b
US dé US V\/ <Rav> lJV dé UV ’ ( )
1/4
() -
dys Ra,/ dyy
0, =05 atyr=o* (15d)
The energy balance equation at the liquid—vapour interface is given as
90 do*
ﬁ = (usdé - vs)[l +B(0-5—0{)] aty=d*, (16)

whereB = $Ja.
The dimensionless film thickness of the condenséttejs not knowna priori and is one of the
results of the present study, wheyé = oRal’*/L. The value ofé* can be obtained from equation

(16).

Vertical plate

(a) Assume that the effect of heat conduction along the plate is negligible in comparison with
transverse heat conduction. Under this condition the heat flux entering the left face of the plate must
be equal to that leaving the right face at any given vertical position. Thus the dimensionless form of
this condition can be written as

30,

00
__¢c — A* S
aye

— AXS _ Qwh — ch
yE=0 ay;k

= e
yr=0 R

1n

whereA* can be regarded as the thermal resistance ratio of natural convection to film and is defined
asA* = (ks/kc)(Ras/RaC)l/"', andR; can be regarded as the thermal resistance ratio of plate to natural
convection and is defined & = (k./k,,)(t/L)Rag’*.

A correlation betweer,,, and 6, can be obtained from equation (17) as

90,

Owc = Owh - Rtay_*
s

: (18)

«
Ys—o

where R; can be regarded as the thermal resistance ratio of plate to film and is defined as
R = (ks/kw)(t/L)Ra§/4. The limiting case ofR, = 0 corresponds to the plate having no thermal
resistance between the two different heat transfer systems. This implie4,thatequal tod,,, for

Rt == O.
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(b) Assume that the aspect ratid. is sufficiently small. Under this circumstance the variation in
the plate temperature can be obtained approximately from the following one-dimensional heat
conduction equation along the plate:

d202W Oy OB (6, 0L _ o "
R ot kot

whereh,; andh,, are the local heat transfer coefficients for the film and natural convectin systems
respectively. The coefficientg, andh,, to be used in equation (19) are the outcome of the solutions
of the boundary layer equations, while the thermal boundary conditions corresponding to the
boundary layer equations are the outcome of the solutions of the one-dimensional heat conduction
equation.

The thermal bounday conditions s =0 and y* =0 corresponding to the boundary layer
equations can be written as

ksRag/“a—% = Lh,(0-5 — 0,,), (20)
8ys y;‘zo
1/4 a0,
—k.Ral Wl = Lh,(0-5 + 0,,). (21)
C

*
yc:O

Substituting equations (20) and (21) into equation (19) yields

d20,, a0 a0
— WL A*RF—|  4RF—| =0. (22)
dé? Coyr| vl
The corresponding boundary conditions are
do
d—éN:O at ¢ =0and 1. (23)

To compare the present results with those given by Poulikakos Nusselt—Rohsenow model for
the condensation problem is introduced into the present analysis, so that equations (7) and (8) can be
simplified as

2
1+ 2% o, 24
s
90
=0 (25)

S

The two-equation model of the local non-similarity methoid applied to solve equations (1)—(3),
(6)—(8), (11) and (12) together with boundary conditions (4) and (14)—(16). Thus the similarity
variablesy,, n, andn, and the reduced streamfunctiosf andF are defined as

ne = Y&/ &4, Yo = EMu(E o) (26a)
ns = y&/Eve, s = E(E o), (26b)

n, = Yo/ EYe, Wy = EFE ), (26c)
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where ., ¥, and , denote the streamfunctions and are defined WQy= dy./dy¥, v, =
=W, Ug = O /OYT, vy = —/AE, U, = A, /ayF and v, = —d, /3¢, It is evident that these
definitions satisfy the continuity equations (1), (6) and (11).

Owing to the introduction of the dimensionless parameters defined in equations (5), (9) and (26),
the partial differential equations (2), (3), (24) and (25) can be transformed into the ordinary
differential equations

£ + (3f, £/ /4 — £2/2)/Pre + 0, + 0-5 = &.( g — fge)/Pre, (27)
0¢ + 3f0c/4 = E(floe — 0c9c), (28)

f”+1=0, (29)

0! =0, (30)

whereg, = af. /3¢, and ¢, = 90./9¢.. The primes denote differentiation with respectjtofor the
natural convection system and with respecydor the film layer.

Two additional differential equations can be obtained by differentiating equations (27) and (28)
with respect to,. To close the system of boundary layer equations at the second-order level, terms
involving ag./d¢. and dp./9¢. in the resulting equations are ignored. Thus the two additional
differential equations are expressed as

g(/:// + (chg(/://‘]' + 7gc fc///4 - 3fc/g(:)/Prc + Q= éc(gt/:z - gggc)/PrCf (31)

q)/c/ + 3fc/(/)::/4 + 7gc0é/4 - fc/(pc = ‘fc(géqoc - (p/cgc)~ (32)

It is evident that equations (27)—(32) constitute a set of ordinary differential equations. The complete
set of boundary conditions is given as

fo=f{=9.=9.=0 and 0,=0r atn®=0, (33a)
f{=0.=0,0,=-05 and ¢,=0 asny, > oo, (33b)
f=f'=0 and 0,=0%¢& atny,=0, (34a)

f”=0 and 0;,=05 atn,=n, (34b)

1 =[1+ B(0-5 — 0%)][3f /(40))] (z34c)

Ns=Msi*

wheren = Rad/*o/LeY4,
The solutions of equations (29) and (30) which satisfy boundary conditions (34a) and (34b) are

f = —n2/6+ngns/2, (35)
05 = [0-5 = OF(O)lns/nsi + 07(S). (36)

Substituting equations (35) and (36) into equations (34c) yields
07(&) = 05 — 15 /(4 — Brg). @7)

It can be seen that the dimensionless plate temperdéttirean be determined from equation (37)
provided that the value of is given.
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Substitution of equation (26) into equations (17) and (22) yields the following requirements at the
plate:

Ou(1 — & 0) = —A*[(L — &)/&]"*04(¢, 0), (38)

d?0 14, _1/ay

YW +AREETVA(E 0) + REL - OT0(1 - £, 0) = 0. (39)
The differential form of equation (39) can be written as
Hw,pfl - 2Hw,p + 9W,p+1

AE?

+ REA*EYA0L(E,. 0) + RE(L — &) 001 — &,,00=0 forp=1,2,....N,

(40)

whereé; =0, ¢y =L, Al = ¢4 — ¢, andN denotes the total nodal number for the vertical plate.
The local heat transfer coefficiehf, for the natural convection system can be expressed as

oT,
AL /[Tc(x,yc=0)—Too]=—qxc/[Tc(x,yczm—Tm], 1)
Ye=0

hxc—_ CW
c

whereq,. denotes the local heat flux through the right face of the vertical plate and is defined as
Oy = —K:(3T:/3y)ly. = 0. Furthermore, the local Nusselt numbéu,, for the natural convection
system can be obtained from the substitution of the dimensionless variables in equations (5) and (26a)
into equation (41):
N = hyex/ke = —Rag/*&d/ (&, 0)/(0F +0°5). (42)
The total heat fluxQ through the right face of the vertical plate is obtained by numerically
integratingq,. over the entire height of the plate, i.e.

Lot
=—k °c dx. 4

The value ofQ can be numerically obtained by using the trapezoidal rule. Substituting equations (5)
and (26a) into equation (43) gives the dimensionless for® ek

o Q

1
- —_— = — 1/4 / e 1/4 = 1/4
T T =T Rac L [6c(&e. e = 0)/&"1dEe = SRag™, (44)

wheres = — [[[0,(¢c, ne = 0)/&/"1d,.
The average heat transfer coefficiétfor a heightL can be defined as

_ 1 L
he = 7J dx. 45)
¢ L(Tsat - Too) 0 e (
Accordingly, the average Nusselt numiéu, can be derived as
Nu, = h,L/k, = Q. (46)

Solution procedures
The computational procedures for solving this problem are listed in the following.

1. First a value ofy; at £ = A is guessed. Accordingly, the boundary layer equations (27), (28),
(31) and (32) together with the boundary conditions (33a) an d(33b) can be solved by using the
fourth-order Runge—Kutta method in conjunction with the Nachtsheim—Swigert iteration
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schemé” for the natural convection system. Afterwards, equation (38) or equation (40) in
conjunction with equations (36) and (37) is solved in order to determine the nodal plate
temperature. The entire calculation is repeated until the requirements at the plate are satisfied.
Otherwise a new guess fag; will be given until all the convergent criteria are satisfied.

2. The computational processes of step 1 are repeated by advancing a small spacewsttlp
¢ =1— A¢&. (Note that the points at = 0 and 1 are singular.)

3. The entire computational procedure is complete when the plate temperature distribution
obtained from steps 1 and 2 does not change.

All computations are performed on a personal computer with an 80486 microprocessor. The
present numerical results were obtained by using 51 nodes for the natural convection system and nine
nodes in the-direction for the case with the approximation of transverse heat conduction (or 25
nodes for the case with the approximation of one-dimensional heat conduction along the plate). The
number of iterations required for each case was less than seven.

RESULTS AND DISCUSSION

The difference between the results obtained from the complete boundary layer equations and those
using the Nusselt—-Rohsenow model was found to be small forJ®walues. Because of this, the
results obtained from the complete boundarylayer equations will not be shown in this paper. It should
be noted that the present results in Figures 2—-8 were obtained by using the transverse heat conduction
approximation. Figure®—4 show comparisons of the dimensionless plate temperatyethe
dimensionless temperature gradient facing the natural convection side(&,, 0)/dyZ, and the
dimensionless thicknes® respectively between the present results and those given by Poufikakos
for R, =0,B =1, Pr, — oo and variousA*-values. It is seen that the present results are in good
agreement with those given by Poulikakos.

Figures 5and 6 show the effects ofA* on 60,. and —a0.(&;, 0)/dy* respectively for
Pr.=0.7,B =1 and variousR,-values. It can be observed from the definition Af that an
increase inA* can be regarded as an increase in the natural convection thermal resistance. Thus
decreasing\* enhances the heat transfer from the condensation side to the natural convection side. In
other words, increasing* makesf,,. tend to the saturation temperature and leads to an increase in
—80.(&., 0)/oy¥ as shown in Figures 5 and 6. Another important observation from Figures 5 and 6 is
that the effect oR; on 6,,, and —a6.(&, 0)/dyZ is not very significant for higheA*-values.

The effects of the natural convection Prandtl numiber on 0, and —af.(&., 0)/dyx for
A* =B =1 and R, = 0 are shown inFigures 7and 8 respectively. These two figures show that
decreasin@r, makes the value df,, tend to 05 and leads to a decrease-#d0.(&., 0)/dyx. A more
important observation is that the effectsRf, on 6,, and —36.(¢., 0)/dyZ are not negligible. The
numerical results given inTable | were obtained by using the transverse heat conduction
approximation forB = 1, R, = 0 and variousA*-values. It can be seen thhit./Ras’* is indeed a
weak function ofPr, for low A*-values. However, the increase Mu,/Ra;’* is about 22% for
A* = 10 asPr, increase from @ to co. The above results further demonstrate that the effeer ois
not negligible for higheA*-values. Another observation is that the valueNaf /Rag’* for A* = 0-1
andPr, = 0.7 is about 82% lower than that fér* = 10 andPr, = 0-7. Obviously, the effect oA* is
more pronounced than that Bf..

The other purpose of the present study is to present the variation in the total heat flux through the
plate withA, Pr,, Pr. andJa,. This task can be performed by using a relationshiplla{f/Ra%/"' and
these parameters with a single general expression, whereA*(Pr.Jp,)"*. The empirical
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Figure 7. Effect ofPr, on 0,, for A* =B =1 andR, =0
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Figure 8. Effect ofPr, on —d0.(&., 0)/dy* for A* =B =1 andR, =0

correlation which presents all the computed values withib% for 01 <A <1,
1 < Pry <3,0-7 < Pr, <10 and0-01 < Ja; < 0-2 is constructed. This correlation can be expressed

as

0-164
Nu o025 A 00197 5,.0-0305
RaQ-CZS = Pr; [ — 1.38665 + 5-3485 <1+—A> Jag Pr;

Pr0-209
C
(1 + pProairyttt

] (47)

The values of),. and—d0.(¢., 0)/dyF predicted using the approximations of one-dimensional heat
conduction along the plate and transverse heat conduction are presenteguias 9and 10
respectively forA* =5B =1, L/t = 16, Pr, = 0-7 and variousR;-values. It is seen that th&,-

value using the approximatin of one-dimensional heat conduction along the plate is lower than that
using the approximation of transverse heat conductiofet 0-1. However, no obvious difference
between them is found foR, = 1. A similar result was described in Reference 10. Moreover,
numerical results obtained by Viskanta and Lankfomalso showed that the predicted plate

Table 1. Variation inPr, with Nu,/Rag’* for
B =1, R, = 0 and variousA*-values

Nu,/Ras’*
Pr. A* =10 A*=1 A* =01
07 05187 03828 00940
2 05684 04021 00942
0 0-6322 04216 00944
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Figure 9. Comparison of plate temperature distributionfigr= 0-7, A* = 5, L/t = 16, B = 1 and variousR,-values

temperature using the approximation of transverse heat conduction was higher than experimental
values. This implies that it is difficult to obtain a more accurate result by using the transverse heat
conduction approximation, especially for lowRy-values. Based on the definition Bf, a thicker

wall means more effective insulation betwen the two reservoirs. Thus increRsiogers the plate
temperature on the side facing the natural convection and leads to an increase in the temperature
difference across the plate. In other words, an increas ieads to a reduction ofa60.(&., 0)/dyZ
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Figure 10. Comparison df — 80.(&., 0)/dyx for Pr, = 0-7, A* =5,L/t = 16, B = 1 and variousR-values
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Figure 11. Comparison of plate temperature distributionPigr=0-7,R, = 0-1, L/t = 16, B = 1 and variousA*-values

and yields a more uniform plate temperature distribution that approaches the freestream temperature
of the natural convection system. It can also be seen from Figure 10 that the areas under the curves of
the dimensionless temperature gradient using the approximations of one-dimensional heat conduction
along the plate and transverse heat conduction are almost identic] fod. However, the area

using the approximation of transverse heat conduction is larger than that using the approximation of

one-dimensional heat conduction along the plateRfo 0-1.
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Figure 12. Comparison ofd0.(&., 0)/dy¥ for Pr, = 0-7,R, = 0-1, L/t = 16, B = 1 and variousA*-values
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The results ford,, and —ad0.(&;, 0)/dyZ predicted the approximations of one-dimensional heat
conduction along the plate and transverse heat conducitoB fod, L/t = 16, Pr, = 0.7,R, = 0-1
and variousA*-values are shown ifigures 1land12 respectively. It is clear that the values®j;
and —d0.(&., 0)/dyF predicted using the approximation of transverse heat conduction are always
higher than those predicted using the approximation of one-dimensional heat conduction along the
plate for R, =0-1 and A* = 1.5. Figure 12 also shows that the areas under the curves of the
dimensionless temperature gradiendd (&., 0)/dyZx using the approximation of transverse heat
conduction are larger than those using the approximation of one-dimensional heat conduction along
the plate.

CONCLUSION

A numerical technique was used to investigate the conjugate problem of laminar film condensation
and natural convection separated by a conducting vertical plate. Results show that the application of
the Nusselt—-Rohsenow model to describe the heat transfer phenomenon on the condensation side can
give accurate predictions provided tifat is of the order of unity or greater add, is less than unity.

The major purpose of the present study was to investigate the difference in predicted results obtained
by using the approximation of one-dimensional heat conduction along the plate and transverse heat
conduction. It was found that the approximation of transverse heat conduction can overpredict the
plate temperature and the overall heat transfer rate through the plate folRpwaues. However, no
significant differences are observed between the two conduction models for Riglaedues. Another
important observation is that the effectfrf, is not negligible for higheA*-values, while the effect

of A* seems to be more pronounced than that of other system parameters. The accuracy of the present
results can only be evidenced through further experiments.

APPENDIX: NOMENCLATURE

A* thermal resistance of natural convection to film
A dimensionless parametex*(Pr.Jp,)**

B dimensionless parameter Jag

Cp specific heat

f,f.,F reduced streamfunctions

g gravitational acceleration

Oc dimensionless functiorfif,/9¢&,

h heat transfer coefficient

hy local heat transfer coefficient

Ny latent heat of condensation

he average heat transfer coefficient for natural convection system
Ja Jakob number

Jp ratio of Ja to Pr

k thermal conductivity

L height of plate

N total nodal number for plate

Nu, average Nusselt number defined in equation (46)
Nu,.  local Nusselt number defined in equation (42)

Pr Prandtl number

Q total heat flux defined in equation (43)

Q dimensionless total heat flux defined in equation (44)



COUPLING BETWEEN FILM CONDENSATION AND NATURAL CONVECTION 335

Ra. natural convectin Rayleigh numbeyf(Te: — Too)L3/veo
Ra film Rayleigh numbergL3(p; — p,)heg/vsKs(Tsar — Too)
Ra, vapour Rayleigh numbegL3(p; — p,)heg/vky(Tsa — Too)

T thermal resistance of plate to natural convectidgyk,,)(t/ L)Ra%/ 4
S integral value defined in equation (44)
t thickness of plate
T temperature
Teat saturation temperature
T freestream temperature
u, v velocity components ix- andy-direction
a,v dimensionless velocity componentsxnandy-direction

X, ¥e, Ys Co-ordinates
yZ,y¥ dimensionless co-ordinates

Greek letters

o thermal diffusivity
p coefficient of thermal expansion

0 film thickness

o* dimensionless film thickness

0 dimensionless temperatuld, — (Tgy: + Too)/2)/ (Tsat — Too)
07, 0F dimensionless plate temperature

u dynamic viscosity

v kinematic viscosity

¢, E.,n dimensionless parameters

S interior grid point in plate

0 density

O dimensionless functiorff, /d¢&,
v streamfunction

Subscripts

o in natural convection system
p evaluation at = ¢,

S in condensate film

Si at liquid—vapour interface

% in vapour phase

w at plate

wc at right face of plate

wh at left face of plate
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