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SUMMARY

Theoretical analyses which incorporate one-dimensional heat conduction along a plate and transverse heat
conduction approximations are presented to predict the net heat transfer between laminar film condensation of a
saturated vapour on one side of a vertical plate and boundary layer natural convection on the other side. It is
assumed that countercurrent boundary layer flows are formed on the two sides. The governing boundary layer
equations of this problem and their corresponding boundary conditions are all cast into dimensionless forms by
using a non-similarity transformation. Thus the resulting system of equations can be solved by using the local
non-similarity method for the boundary layer equations and a finite difference method for the heat conduction
equation of the plate. The plate temperature and the heat flux through the plate are repetitively determined until
the solutions for each side of the plate match. The predicted results show that the effect ofPrc is not negligible
for larger values ofA* (thermal resistance ratio between natural convection side and condensing film side) and
the approximation of transverse heat conduction overpredicts the plate temperature for lower values ofRt
(thermal resistance ratio between plate and condensing film). However, no significant differences are observed
between the two different approximations for higher values ofRt.
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INTRODUCTION

Heat transfer across a vertical wall separating two semi-infinite fluid reservoirs at different
temperatures has practical importance in numerous thermal engineering applications, such as nuclear
reactor cooling, heat exchangers, thermal insulation of buildings, etc. The thermal interaction
involved is for the most part inherent in the design of the heat transfer apparatus. Owing to its
importance, various methods have been proposed to analyse such problems.1–10Faghri and Sparrow7

studied the conjugate problem of thin film condensation on the outside of a vertical pipe and fully
developed forced convection of a cold fluid inside the pipe. Poulikakos8 presented a theoretical
analysis for examining the phenomenon of conjugate laminar film condensation of a saturated vapour
on one side of a vertical wall and laminar natural convection on the other side. In that work the
natural convection Prandtl numberPrc is assumed to approach infinity. Owing to this assumption,
inertia terms in the momentum equation can be neglected compared with viscous and buoyancy
terms. Furthermore, the Oseen linearization method9 and the Nusselt–Rohsenow model were
employed to simplify the natural convection and condensation problems respectively. However, the
effect of the plate thermal resistance on the interaction between the two different heat transfer
systems was not taken into account in this earlier work. Numerical results given by Poulikakos
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showed that omitting the inertia terms of the momentum equation on the natural convection side can
yield acceptable results (accurate to within 10%) even forPrc � O�1�. On the other hand, the overall
heat transfer rate can be regarded as a weak function ofPrc. Moreover, it was found in Reference 8
that the step size of the plate temperatureTw must be very small to obtain accurate results.

The present study proposes a mathematical model to investigate the conjugate problem of laminar
film condensation and laminar natural convection separated by a vertical plate. It was shown in
Reference 10 that the plate temperature distribution can be approximately determined by using a one-
dimensional heat conduction equation provided that the aspect ratio (thickness=height) t=L is
sufficiently small. The main purpose of the current study is to investigate the difference between the
present results using a one-dimensional model of heat conduction along the plate and transverse heat
conduction and those given by Poulikakos8 for various important parameters, such as the thermal
resistance of natural convection to film,A*, the natural convection Prandtl numberPrc and the
thermal resistance of plate to film,Rt. Furthermore, the effect ofA*; Prc and Rt on the thermal
interaction through the plate between the two different systems will also be discussed. It should be
noted that both the plate temperature and the heat flux through the plate are unknowna priori in the
present problem. Thus the boundary layer equations on both sides of the plate and the one-
dimensional heat conduction equation for the vertical plate must be solved simultaneously. This was
accomplished by using the two-equation model of the local non-similarity method11 in conjunction
with the Nachtsheim–Swigert iteraction scheme12 and a finite difference approximation.

MATHEMATICAL FORMULATION

The physical geometry of this study and the co-ordinate system are shown inFigure 1, where a
vertical impermeable plate of heightL and thicknesst separates two semi-infinite fluid reservoirs at
different temperatures. The warmer reservoir, at a uniform temperatureTsat, contains a saturated
vapour. The ambient temperature on the natural convection side isTc. Owing to gravity, a continuous
laminar film of condensate occurs on the condensatin side of the plate and flows downwards along the
plate. It should be noted that liquid and vapour boundary layers exist simultaneously on the
condensation side. The heating effect of the condensation side can give rise to an upward flow along
the plate on the natural convection side. Thus the two fluid streams move in opposite directions for
this problem. This analysis is restricted to the case where steady state conditions have been reached
and the flows are laminar. It is also assumed that the physical properties of the natural convection are
constant, except for the density in the buoyancy term, and the assumptions for film condensation

Figure 1. Physical geometry of system

320 H.-T. CHEN AND S.-M. CHANG



along a vertical plate proposed by Kohet al.13 are employed in the present study. Based on these
assumptions, this problem can be formulated in terms of the boundary layer equations for the two
different fluid streams and the one-dimensional heat conduction equation for the plate. It will be
shown that these governing differential equations can be considered separately. Thermal coupling is
achieved by the governing heat conduction equation for the vertical plate separating the two heat
transfer systems.

Natural convection side

The dimensionless forms of the boundary layer equations expressing the conservation of mass,
momentum and energy for the natural convection system shown in Figure 1 can be written as
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with boundary conditions

uc � vc � 0 and yc � yr*�x� at yc* � 0; �4a�

uc � 0 and yc � ÿ0�5 as yc* ! 1: �4b�

The dimensionless parameters in equations (1)–(4) are defined as

yc* � Ra1=4
c yc=L; xc � x=L; Prc � nc=ac; uc � ~ucL=acRa1=2

c ; vc � ~vcL=acRa1=4
c ;

yc � �Tc ÿ �Tsat � T
1

�=2�=�Tsat ÿ T
1

�Tsat ÿ T
1

�; �5�

whereRac is the natural convection Rayleigh number and is defined asRac � gb�Tsat ÿ T
1

�L3
=ncac.

T
1

denotes the freestream temperature in the natural convection system.yr*�x� denotes the
dimensionless plate temperature facing the natural convection side,ywc�x�, when the approximation
of transverse heat conduction is considered. However,yr*�x� denotes the dimensionless plate
temperatureyw�x� for the case using the approximation of one-dimensional heat conduction along the
plate. ywc and yw are defined as ywc � �Twc ÿ �Tsat � T

1

�=2�=�Tsat ÿ T
1

� and
yw � �Tw ÿ �Tsat � T

1

�=2�=�Tsat ÿ T
1

�. The boundary conditionyc � ywc�xc� at yc* � 0 will be
assumed when heat conduction along the vertical plate is negligible. However, the boundary
condition atyc* � 0 is yc � yw�xc� when the approximation of one-dimensional heat conduction
along the plate is considered.

Film condensation side

The dimensionless boundary layer equations expressing the conservation of mass, momentum and
energy for the condensation system can be written as follows.
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Liquid
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The dimensionless parameters in equations (6)–(8) are given as

ys* � Ra1=4
s ys=L; x � 1 ÿ xc; us � ~usmsRa1=2
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whereJas is the film Jakob number,Prs is the film Prandtl number,Jps is the ratio ofJas to Prs, and
Ras is the film Rayleigh number. These dimensionless numbers are defined respectively as

Jas � cps�Tsat ÿ T
1
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Vapor
It is assumed that the pure vapor outside the condensate layer is at the saturation temperature. Thus

only the continuity and momentum equations are required for the vapour phase:
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The dimensionless parameters in equations (11) and (12) are defined as

yv* � Ra1=4
v �ys ÿ d�=L; uv � ~uvmvRa1=2

v =g�rs ÿ rv�L
2
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whereJav is the vapour Jakob number,Prv is the vapour Prandtl number,Jpv is the ratio ofJav to
Prv, andRav is the vapour Rayleigh number.

The boundary conditions for the condensation system are

us � vs � 0 and ys � y1*�x� at ys* � 0; �14a�

uv ! 0 as yv* ! 1; �14b�

wherey1*�x� denotes the dimensionless plate temperature facing the condensation side,ywh�x�, when
the approximation of transverse heat conduction is considered.ywh is defined as
ywh � �Twh ÿ �Tsat � T

1

�=2�=�Tsat ÿ T
1

�. y1*�x� denotesyw�x� for the case in which one-dimensional
heat conduction along the plate is considered.
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Interface matching

The vapour velocity tangent to the liquid–vapour interface is the same as the liquid velocity when
there is no slip. The vapour velocity approaches zero at some distance away from this interface. The
compatibility requirements are that the velocity, mass transfer, shear force and temperature along the
liquid–vapour interface must be matched. The dimensionless forms of these compatibility
requirements are
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The energy balance equation at the liquid–vapour interface is given as
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whereB �

3
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The dimensionless film thickness of the condensate,d*, is not knowna priori and is one of the
results of the present study, whered* � dRa1=4

s =L. The value ofd* can be obtained from equation
(16).

Vertical plate

(a) Assume that the effect of heat conduction along the plate is negligible in comparison with
transverse heat conduction. Under this condition the heat flux entering the left face of the plate must
be equal to that leaving the right face at any given vertical position. Thus the dimensionless form of
this condition can be written as
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whereA* can be regarded as the thermal resistance ratio of natural convection to film and is defined
asA* � �ks=kc��Ras=Rac�

1=4, andRt* can be regarded as the thermal resistance ratio of plate to natural
convection and is defined asRt* � �kc=kw��t=L�Ra1=4

c .
A correlation betweenywh andywc can be obtained from equation (17) as

ywc � ywh ÿ Rt
@ys

@ys*

�
�
�
�
y�s�0

; �18�

where Rt can be regarded as the thermal resistance ratio of plate to film and is defined as
Rt � �ks=kw��t=L�Ra1=4

s . The limiting case ofRt � 0 corresponds to the plate having no thermal
resistance between the two different heat transfer systems. This implies thatywc is equal toywh for
Rt � 0.
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(b) Assume that the aspect ratiot=L is sufficiently small. Under this circumstance the variation in
the plate temperature can be obtained approximately from the following one-dimensional heat
conduction equation along the plate:

d2
yw

dx2 ÿ

hxc�yw � 0�5�L2

kwt
ÿ

hxs�yw ÿ 0�5�L2

kwt
� 0; �19�

wherehxs andhxc are the local heat transfer coefficients for the film and natural convectin systems
respectively. The coefficientshxs andhxc to be used in equation (19) are the outcome of the solutions
of the boundary layer equations, while the thermal boundary conditions corresponding to the
boundary layer equations are the outcome of the solutions of the one-dimensional heat conduction
equation.

The thermal bounday conditions atys* � 0 and yc* � 0 corresponding to the boundary layer
equations can be written as
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Substituting equations (20) and (21) into equation (19) yields
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The corresponding boundary conditions are

dyw

dx
� 0 at x � 0 and 1: �23�

To compare the present results with those given by Poulikakos,8 the Nusselt–Rohsenow model for
the condensation problem is introduced into the present analysis, so that equations (7) and (8) can be
simplified as

1 �
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The two-equation model of the local non-similarity method11 is applied to solve equations (1)–(3),
(6)–(8), (11) and (12) together with boundary conditions (4) and (14)–(16). Thus the similarity
variablesZc; Zs andZv and the reduced streamfunctionsfc, f andF are defined as

Zc � yc*=x
1=4
c ; cc � x

3=4
c fc�xc; Zc�; �26a�

Zs � ys*=x
1=4

; cs � x
3=4f �x; Zs�; �26b�

Zv � yv*=x
1=4

; cv � x
3=4F�x; Zv�; �26c�
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where cc;cs and cv denote the streamfunctions and are defined byuc � @cc=@yc*; vc �

ÿ@cc=@xc; us � @cs=@ys*; vs � ÿ@cs=@x; uv � @cv=@yv* and vv � ÿ@cv=@x. It is evident that these
definitions satisfy the continuity equations (1), (6) and (11).

Owing to the introduction of the dimensionless parameters defined in equations (5), (9) and (26),
the partial differential equations (2), (3), (24) and (25) can be transformed into the ordinary
differential equations

f 000c � �3fc f 00c =4 ÿ f 02c =2�=Prc � yc � 0�5 � xc� f 0c g0

c ÿ f 00c gc�=Prc; �27�

y
00

c � 3fcy
0
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0
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f 000 � 1 � 0; �29�

y
00

s � 0; �30�

wheregc � @fc=@xc andjc � @yc=@xc. The primes denote differentiation with respect toZc for the
natural convection system and with respect toZs for the film layer.

Two additional differential equations can be obtained by differentiating equations (27) and (28)
with respect toxc. To close the system of boundary layer equations at the second-order level, terms
involving @gc=@xc and @jc=@xc in the resulting equations are ignored. Thus the two additional
differential equations are expressed as

g000c � �3fcg00c=4 � 7gc f 00c =4 ÿ 3f 0c g0

c�=Prc � jc � xc�g
02
c ÿ g00
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0
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0

cgc�: �32�

It is evident that equations (27)–(32) constitute a set of ordinary differential equations. The complete
set of boundary conditions is given as

fc � f 0c � gc � g0c � 0 and yc � yr* at Zc
� 0; �33a�

f 0c � g0c � 0; yc � ÿ0�5 and jc � 0 as Zc ! 1; �33b�

f � f 0 � 0 and ys � y1*�x� at Zs � 0; �34a�

f 00 � 0 and ys � 0�5 at Zs � Zsi; �34b�

1 � �1 � B�0�5 ÿ yl*���3f =�4y0s��Zs�Zsi
; �z34c�

whereZsi � Ra1=4
s d=Lx1=4.

The solutions of equations (29) and (30) which satisfy boundary conditions (34a) and (34b) are

f � ÿZ3
s=6 � ZsiZ

2
s=2; �35�

ys � �0�5 ÿ yl*�x��Zs=Zsi � y1*�x�: �36�

Substituting equations (35) and (36) into equations (34c) yields

y1*�x� � 0�5 ÿ Z4
si=�4 ÿ BZ4

si�: �37�

It can be seen that the dimensionless plate temperaturey1* can be determined from equation (37)
provided that the value ofZsi is given.

COUPLING BETWEEN FILM CONDENSATION AND NATURAL CONVECTION 325



Substitution of equation (26) into equations (17) and (22) yields the following requirements at the
plate:

y
0

c�1 ÿ x; 0� � ÿA*��1 ÿ x�=x�
1=4
y
0

s�x; 0�; �38�
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y
0
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y
0

c�1 ÿ x; 0� � 0: �39�

The differential form of equation (39) can be written as

yw;pÿ1 ÿ 2yw;p � yw;p�1

Dx
2 � Rt*A*xÿ1=4

p y
0

s�xp; 0� � Rt*�1 ÿ xp�
ÿ1=4

y
0

c�1 ÿ xp; 0� � 0 for p � 1; 2; . . . ; N ;

�40�

wherex1 � 0; xN � L;Dx � xp�1 ÿ xp andN denotes the total nodal number for the vertical plate.
The local heat transfer coefficienthxc for the natural convection system can be expressed as

hxc � ÿkc
@Tc

@yc

�
�
�
�
yc�0

�Tc�x; yc � 0� ÿ T
1

� � ÿqxc=�Tc�x; yc � 0� ÿ T
1

�; �41�

whereqxc denotes the local heat flux through the right face of the vertical plate and is defined as
qxc � ÿkc�@Tc=@yc�jyc � 0. Furthermore, the local Nusselt numberNuxc for the natural convection
system can be obtained from the substitution of the dimensionless variables in equations (5) and (26a)
into equation (41):

Nuxc � hxcx=kc � ÿRa1=4
c x

3=4
c y

0

c�xc; 0�=�yr* � 0�5�: �42�

The total heat fluxQ through the right face of the vertical plate is obtained by numerically
integratingqxc over the entire height of the plate, i.e.

Q � ÿkc

�L

0
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@yc

� �
�
�
�
yc�0

!

dx: �43�

The value ofQ can be numerically obtained by using the trapezoidal rule. Substituting equations (5)
and (26a) into equation (43) gives the dimensionless form ofQ as

~Q �

Q

kc�Tsat ÿ T
1
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0
�y
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c �dxc � SRa1=4

c ; �44�

whereS � ÿ

� 1
0 �y

0

c�xc; Zc � 0�=x1=4
c �dxc.

The average heat transfer coefficient�hc for a heightL can be defined as

�hc �
1

L�Tsat ÿ T
1

�

�L

0
qxcdx: �45�

Accordingly, the average Nusselt numberNuc can be derived as

Nuc �
�hcL=kc �

~Q: �46�

Solution procedures

The computational procedures for solving this problem are listed in the following.

1. First a value ofZsi at x � Dx is guessed. Accordingly, the boundary layer equations (27), (28),
(31) and (32) together with the boundary conditions (33a) an d(33b) can be solved by using the
fourth-order Runge–Kutta method in conjunction with the Nachtsheim–Swigert iteration
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Figure 2. Comparison ofyw for Prc ! 1; Rt � 0; B � 1 and variousA*-values

Figure 3. Comparison ofÿ@yc�xc; 0�=@yc* for Prc ! 1; Rt � 0; B � 1 and variousA*-values
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Figure 5. Effect ofA* on ywc for B � 1; Prc � 0�7 and variousRt-values

Figure 4. Comparison ofd* for Prc � 1; Rt � 0; B � 1 and variousA*-values
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scheme12 for the natural convection system. Afterwards, equation (38) or equation (40) in
conjunction with equations (36) and (37) is solved in order to determine the nodal plate
temperature. The entire calculation is repeated until the requirements at the plate are satisfied.
Otherwise a new guess forZsi will be given until all the convergent criteria are satisfied.

2. The computational processes of step 1 are repeated by advancing a small space stepDx until
x � 1 ÿ Dx. (Note that the points atx � 0 and 1 are singular.)

3. The entire computational procedure is complete when the plate temperature distribution
obtained from steps 1 and 2 does not change.

All computations are performed on a personal computer with an 80486 microprocessor. The
present numerical results were obtained by using 51 nodes for the natural convection system and nine
nodes in thex-direction for the case with the approximation of transverse heat conduction (or 25
nodes for the case with the approximation of one-dimensional heat conduction along the plate). The
number of iterations required for each case was less than seven.

RESULTS AND DISCUSSION

The difference between the results obtained from the complete boundary layer equations and those
using the Nusselt–Rohsenow model was found to be small for lowJa-values. Because of this, the
results obtained from the complete boundarylayer equations will not be shown in this paper. It should
be noted that the present results in Figures 2–8 were obtained by using the transverse heat conduction
approximation. Figures2–4 show comparisons of the dimensionless plate temperature,yw, the
dimensionless temperature gradient facing the natural convection side,ÿ@yc�xc; 0�=@yc*, and the
dimensionless thicknessd* respectively between the present results and those given by Poulikakos8

for Rt � 0; B � 1; Prc ! 1 and variousA*-values. It is seen that the present results are in good
agreement with those given by Poulikakos.8

Figures 5 and 6 show the effects ofA* on ywc and ÿ@yc�xc; 0�=@yc* respectively for
Prc � 0�7; B � 1 and variousRt-values. It can be observed from the definition ofA* that an
increase inA* can be regarded as an increase in the natural convection thermal resistance. Thus
decreasingA* enhances the heat transfer from the condensation side to the natural convection side. In
other words, increasingA* makesywc tend to the saturation temperature and leads to an increase in
ÿ@yc�xc; 0�=@yc* as shown in Figures 5 and 6. Another important observation from Figures 5 and 6 is
that the effect ofRt on ywc andÿ@yc�x; 0�=@yc* is not very significant for higherA*-values.

The effects of the natural convection Prandtl numberPrc on yw and ÿ@yc�xc; 0�=@yc* for
A* � B � 1 and Rt � 0 are shown inFigures 7and 8 respectively. These two figures show that
decreasingPrc makes the value ofyw tend to 0�5 and leads to a decrease inÿ@yc�xc; 0�=@yc*. A more
important observation is that the effects ofPrc on yw andÿ@yc�xc; 0�=@yc* are not negligible. The
numerical results given inTable I were obtained by using the transverse heat conduction
approximation forB � 1; Rt � 0 and variousA*-values. It can be seen thatNuc=Ra1=4

c is indeed a
weak function ofPrc for low A*-values. However, the increase inNuc=Ra1=4

c is about 22% for
A* � 10 asPrc increase from 0�7 to?. The above results further demonstrate that the effect ofPrc is
not negligible for higherA*-values. Another observation is that the value ofNuc=Ra1=4

c for A* � 0�1
andPrc � 0�7 is about 82% lower than that forA* � 10 andPrc � 0�7. Obviously, the effect ofA* is
more pronounced than that ofPrc.

The other purpose of the present study is to present the variation in the total heat flux through the
plate with ~A; Prs; Prc andJas. This task can be performed by using a relationship ofNuc=Ra1=4

c and
these parameters with a single general expression, where~A � A*�PrcJps�

1=4. The empirical
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Figure 6. Effect ofA* on ÿ@yc�xc; 0�=@yc* for B � 1; Prc � 0�7 and variousRt-values

Figure 7. Effect ofPrc on yw for A* � B � 1 andRt � 0
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correlation which presents all the computed values within0�5% for 0�14 ~A4 1;
14Prs 4 3; 0�74Prc 4 10 and0�014 Jas 4 0�2 is constructed. This correlation can be expressed
as

Nuc

Ra0�25
c

� Prÿ0�25
c

�

ÿ 1�38665 � 5�3485
~A

1 � ~A

 !0�164

Jaÿ0�0197
s Pr0�0305

s
Pr0�209

c

�1 � Pr0�217
c �

1�11

�

: �47�

The values ofywc andÿ@yc�xc; 0�=@yc* predicted using the approximations of one-dimensional heat
conduction along the plate and transverse heat conduction are presented inFigures 9 and 10
respectively forA* � 5; B � 1; L=t � 16; Prc � 0�7 and variousRt-values. It is seen that theywc-
value using the approximatin of one-dimensional heat conduction along the plate is lower than that
using the approximation of transverse heat conduction forRt � 0�1. However, no obvious difference
between them is found forRt � 1. A similar result was described in Reference 10. Moreover,
numerical results obtained by Viskanta and Lankford3 also showed that the predicted plate

Figure 8. Effect ofPrc on ÿ@yc�xc; 0�=@yc* for A* � B � 1 andRt � 0

Table I. Variation inPrc with Nuc=Ra1=4
c for

B � 1; Rt � 0 and variousA*-values

Nuc=Ra1=4
c

Prc A* � 10 A* � 1 A* � 0�1

0�7 0�5187 0�3828 0�0940
2 0�5684 0�4021 0�0942
? 0�6322 0�4216 0�0944
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temperature using the approximation of transverse heat conduction was higher than experimental
values. This implies that it is difficult to obtain a more accurate result by using the transverse heat
conduction approximation, especially for lowerRt-values. Based on the definition ofRt, a thicker
wall means more effective insulation betwen the two reservoirs. Thus increasingRt lowers the plate
temperature on the side facing the natural convection and leads to an increase in the temperature
difference across the plate. In other words, an increase inRt leads to a reduction ofÿ@yc�xc; 0�=@yc*

Figure 10. Comparison of0 ÿ @yc�xc; 0�=@yc* for Prc � 0�7, A* � 5; L=t � 16; B � 1 and variousRt-values

Figure 9. Comparison of plate temperature distribution forPrc � 0�7; A* � 5; L=t � 16; B � 1 and variousRt-values
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and yields a more uniform plate temperature distribution that approaches the freestream temperature
of the natural convection system. It can also be seen from Figure 10 that the areas under the curves of
the dimensionless temperature gradient using the approximations of one-dimensional heat conduction
along the plate and transverse heat conduction are almost identical forRt � 1. However, the area
using the approximation of transverse heat conduction is larger than that using the approximation of
one-dimensional heat conduction along the plate forRt � 0�1:

Figure 11. Comparison of plate temperature distribution forPrc � 0�7; Rt � 0�1; L=t � 16; B � 1 and variousA*-values

Figure 12. Comparison ofÿ@yc�xc; 0�=@yc* for Prc � 0�7; Rt � 0�1; L=t � 16; B � 1 and variousA*-values
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The results forywc and ÿ@yc�xc; 0�=@yc* predicted the approximations of one-dimensional heat
conduction along the plate and transverse heat conduciton forB � 1; L=t � 16; Prc � 0�7; Rt � 0�1
and variousA*-values are shown inFigures 11and12 respectively. It is clear that the values ofywc

and ÿ@yc�xc; 0�=@yc* predicted using the approximation of transverse heat conduction are always
higher than those predicted using the approximation of one-dimensional heat conduction along the
plate for Rt � 0�1 and A* � 1�5. Figure 12 also shows that the areas under the curves of the
dimensionless temperature gradientÿ@yc�xc; 0�=@yc* using the approximation of transverse heat
conduction are larger than those using the approximation of one-dimensional heat conduction along
the plate.

CONCLUSION

A numerical technique was used to investigate the conjugate problem of laminar film condensation
and natural convection separated by a conducting vertical plate. Results show that the application of
the Nusselt–Rohsenow model to describe the heat transfer phenomenon on the condensation side can
give accurate predictions provided thatPrs is of the order of unity or greater andJas is less than unity.
The major purpose of the present study was to investigate the difference in predicted results obtained
by using the approximation of one-dimensional heat conduction along the plate and transverse heat
conduction. It was found that the approximation of transverse heat conduction can overpredict the
plate temperature and the overall heat transfer rate through the plate for lowerRt-values. However, no
significant differences are observed between the two conduction models for higherRt-values. Another
important observation is that the effect ofPrc is not negligible for higherA*-values, while the effect
of A* seems to be more pronounced than that of other system parameters. The accuracy of the present
results can only be evidenced through further experiments.

APPENDIX: NOMENCLATURE

A* thermal resistance of natural convection to film
~A dimensionless parameter,A*�PrcJps�

1=4

B dimensionless parameter,3
8 Jas

cp specific heat
f ; fc; F reduced streamfunctions
g gravitational acceleration
gc dimensionless function,@fc=@xc

h heat transfer coefficient
hx local heat transfer coefficient
hfg latent heat of condensation
�hc average heat transfer coefficient for natural convection system
Ja Jakob number
Jp ratio of Ja to Pr
k thermal conductivity
L height of plate
N total nodal number for plate
Nuc average Nusselt number defined in equation (46)
Nuxc local Nusselt number defined in equation (42)
Pr Prandtl number
Q total heat flux defined in equation (43)
~Q dimensionless total heat flux defined in equation (44)
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Rac natural convectin Rayleigh number,gb�Tsat ÿ T
1

�L3
=ncac

Ras film Rayleigh number,gL3
�rs ÿ rv�hfg=nsks�Tsat ÿ T

1

�

Rav vapour Rayleigh number,gL3
�rs ÿ rv�hfg=nvkv�Tsat ÿ T

1

�

Rt* thermal resistance of plate to natural convection,�kc=kw��t=L�Ra1=4
c

S integral value defined in equation (44)
t thickness of plate
T temperature
Tsat saturation temperature
T
1

freestream temperature
u; v velocity components inx- andy-direction
~u; ~v dimensionless velocity components inx- andy-direction
x; yc; ys co-ordinates
yc*; ys* dimensionless co-ordinates

Greek letters

a thermal diffusivity
b coefficient of thermal expansion
d film thickness
d* dimensionless film thickness
y dimensionless temperature,�T ÿ �Tsat � T

1

�=2�=�Tsat ÿ T
1

�

y1*; yr* dimensionless plate temperature
m dynamic viscosity
n kinematic viscosity
x; xc; Z dimensionless parameters
xp interior grid point in plate
r density
jc dimensionless function,@yc=@xc

c streamfunction

Subscripts

c in natural convection system
p evaluation atx � xp

s in condensate film
si at liquid–vapour interface
v in vapour phase
w at plate
wc at right face of plate
wh at left face of plate
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